MATH 135 - QUIZ 7 SOLUTIONS - JAMES HOLLAND

Question 1. Suppose a shephard with s sheep requires (in total) $C(s)=5 s^{2}-8 \sqrt{s+1}$ dollars per month care for them. Using marginal analysis, estimate the cost of the 16th sheep.

Solution .:

For $s \approx 15$, we have that $C(s) \approx C(15)+C^{\prime}(15) \cdot(s-15)$. So the cost of the 16th sheep is

$$
C(16)-C(15) \approx\left[C(15)+C^{\prime}(15) \cdot 1\right]-C(15)=C^{\prime}(15)
$$

Since $C^{\prime}(s)=10 s-4(s+1)^{-1 / 2}$, we have that the cost of the 16 th sheep is roughly $C^{\prime}(15)=150-4 \cdot \frac{1}{4}=149$ dollars per month.

Question 2. Two people are tied together by a 10 foot long rope. Suppose one of the people is asleep on the ground, 8 feet away from the side of a building. The other person is 6 feet high, climbing the side of the building at a rate of 1 foot per second, and so dragging the sleeping person along the ground. How fast will the sleeper be dragged after 2 seconds?

Solution .:

The situation describes a right-triangle with a hypotenuse length of 10 feet. The vertical side of the triangle has a length equal to the height of the climber, $H(t)$, which is given by $H(t)=6_{\mathrm{ft}}+1_{\mathrm{ft} / \mathrm{s}} t$, for t measured in seconds. The distance of the sleeping person from the side of the building can then be calculated using the Pythagorean theorem:

$$
H(t)^{2}+D(t)^{2}=\left(10_{\mathrm{ft}}\right)^{2}
$$

Using implicit differentiation to find $\frac{\mathrm{d} D}{\mathrm{~d} t}$, we have that $2 H(t) \frac{\mathrm{d} H}{\mathrm{~d} t}+2 D(t) \frac{\mathrm{d} D}{\mathrm{~d} t}=0$, and hence using the values given in the problem,

$$
\frac{\mathrm{d} D}{\mathrm{~d} t}=\frac{-2 H(t) \frac{\mathrm{d} H}{\mathrm{~d} t}}{2 D(t)}=\frac{-H(t) \frac{\mathrm{d} H}{\mathrm{~d} t}}{D(t)}=\frac{-\left(6_{\mathrm{ft}}+1_{\mathrm{ft} / \mathrm{s}} \cdot 2_{\mathrm{s}}\right) \cdot 1_{\mathrm{ft} / \mathrm{s}}}{D\left(2_{\mathrm{s}}\right)}=\frac{-8_{\mathrm{ft}^{2} / \mathrm{s}}}{D\left(2_{\mathrm{s}}\right)} .
$$

To find $D\left(2_{\mathrm{s}}\right)$, we note that $H\left(2_{\mathrm{s}}\right)^{2}+D\left(2_{\mathrm{s}}\right)^{2}=\left(10_{\mathrm{ft}}\right)^{2}$ implies that $\left(8_{\mathrm{ft}}\right)^{2}+D\left(2_{\mathrm{s}}\right)^{2}=100_{\mathrm{ft}^{2}}$ and hence $D\left(2_{\mathrm{s}}\right)=\sqrt{36_{\mathrm{ft}^{2}}}=6_{\mathrm{ft}}$. Therefore,

$$
\frac{\mathrm{d} D}{\mathrm{~d} t}=\frac{-8_{\mathrm{ft}^{2} / \mathrm{s}}}{6_{\mathrm{ft}}}=\left(-\frac{4}{3}\right)_{\mathrm{ft} / \mathrm{s}} .
$$

Question 3. Consider the function $f(x)=x^{2}-2 x-15$.
The actual value of $f(4.9)=-0.79$.
Using methods learned in class, estimate $f(4.9)$.
Note: do not write ' $=$ ' when you mean ' \approx ' (nor ' \approx ' when you mean ' $=$ ').
Solution . \therefore
For $x \approx 5, f(x) \approx f(5)+f^{\prime}(5) \cdot(x-5)$. In particular, since $f(5)=25-10-15=0$, and $f^{\prime}(x)=2 x-2$, we have that

$$
f(x) \approx 0+(2 \cdot 5-2) \cdot(x-5)=8(x-5) \quad \text { so that } \quad f(4.9) \approx 8 \cdot(-0.1)=-0.8
$$

which is a pretty good approximation for the actual value of -0.79 .

